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L INTRODUCTION

W henever acceleration is imposed on a fluid flow either by acceleration of a body or by wcelmuion

externally imposed on the fluid. additional fluid forces will act on the surfaes in contac with the fluid.

These fluid inertial forces cmi be of considerable importance in many ocean engineering pmtiemn The

purpose of this report is to review some of the charcteristics of these fluid ierttal force and. in prtic-

ular, to evaluate the state of knowledge of the "added mas" matrices which ae used to chawoeuize the

forces. The firt part of the report (Section 3) is also intanded to serve educetional purposes. The

second part (Section 4) reviews the existing data base and some of the erees in whidi the is either a

lack of data or a data base which is contrUtmiory. It is also intnded to convey the lirnitatto of the

existing knowledge. Finally a number of suggestions for improvement in our present unrtaiing ae

listed in the conduding section,

Unlike many reviews, the author has not allempted to absorb every publicion on the subject.

Rather the time which would have been spent on such an effort, was devoted to more concentrated

analysis of the subject. Other excellent reviews of vanous aspects of unsteady fluid forces exist in per

tiwular the reader is referred to the recent books by Blevins (Ret.18) and by Sarpca and lsacon

(Ref. 17).

, r
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I GESERAL EPLANATION OF ADDED MASS

Perhaps the simplest view of the phenomenon of "added m' Io tba it dte ln the neawy work

done to change the kinetic energy soiated with the motion of the fluid. A ny m tion of a fluid sawi

as that whid oconm when a body moves through it irnhes a certain positive, non-zero uammt of

kinetic energy assodated with the fluid motions. This kinetic energy, T can be sirly represmted by

T= Pf(742+u& +ii4)dV= -f%%dl((2 v 2 v V

where the %(i=1, 2,3) represent the Cartesim components of fluid velocity and V is the entire

domain or volume of fluid For simplicity we shall assume throughout that the fluid is incompresible

with a densty p.

If the motion of the body is one of steady rectilinear translation at velocity, U, through a fluid oth-

erwise at rest then dearly the amount of kinetic energy, T, remans constant with time. Furthermore it

is dear that T will in some manner be proportional to the square of the velocity, U, of trons.ion

Indeed if the flow is such that when U is altered the velocity, t, at each point in fluid reltive to the

body varies in direct proportion to U then T could conveniently be expressed as

T=p U2 I= (2)

and the integral I would be a simple invariant number. This is indeed the cee with some fluid flow

solutions sgch as potential flow and low Reynolds number Stokes flow. However it may not be true for

the complex, vortex shedding flows which ocur at intermediate Reynolds numbers.

Now consider that the body begins to a1erae or decelerame. Clearty the kinetic energy in the fluid

will also begin to change a U changes If the body is accelerated then the kinetic energy will in all

probability inceme. But this energy must be supplied. additional work must be done on the fluid by

the body in order to incease the kinetic energy of the fluid. And the rate of additional work required

is simply the rate of change of T with respect to tine, dTA/ This additional work is therefore experi-

enced by the body as an additional dreg, F such that the rate of additional work done, -FU is slri~y
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equal to dT/ff. If the pattem of flow is not wging such that the integral I ramatn cmt it fol-

lows that the "added dreg', F is simply

-L!K= ,I !u (3)

Now this force has the me form and sign as that required to accelerate the s (m) of the body

itself, namely mV-. Consequently it is often convenient to visalize the nas of fluidjp, as an ' ded

msg', M, of fluid which is being accelerated with the body. Of course, them is no such identifiable

fluid mass rather all of the fluid is accelerab to some degree smch that the total kinetic ensigy of the

fluid is increasing.

It is important to stress that F is not the only dreg force experienced by the body. D uing steady

translation in a real viscous fluid there is a steady dreg asociated with the necessary work which must

be done to balance the st-ealy rate of disapation of energy in the viscous fluid. W hen the body

accl rates there will be a Amilar though not necessarily equal drag associated with the instantaneous

value of U. Furtheirmm them may be delayed (ffeds assocated with the entire previous history of

translation (e.g. the Basset force, Ref.. p375).
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3. ANALYTICAL APPROACHES TO ADDED MASS

1 EXAMPLES: RECTILINEAR MOTION OFA SHEI3 AND CYLINDE VITH POTENTIALLOW

In the prceding discumon the consequences of acceleration were illustnvted by refemnae to rp rec-

tilinear motion of velocity, U It should be dear thA the methodology could be extended to more gin-

eral motions and indeed this will be cmed out in the following section. Bat prior to this it is worth

ilhisUrWn how the integral, 1, and ther ore the added mass can be calculated for rectihnear rno

For the purposes of this example let us examine the idealized potential flows post a qere and a

cylinder. The geometry for both is as depicted in Fig.l. The sphere or cylnder of radius R is assumed

to be moving with time varying velocity U(t) (t is tme) in the positive z direction. Polar coordi-

nates (r, eam usedwherez=ros

Fig. 1

The resulting fluid velocities .v in the r and d directions ae then given by a velocity potenU ,

such that

alp L 09(4)

and the appmphate velocity potentials in the two cases are

URc s  (5)

UR2S n :- -'s
r

The reader who is unfanliar with these soluUons may wish tosty hinsdf t,, two solutions aisfy

(i) Laplaces equation. V 2p=0, in spherical and cylindrcal coordinates respectively and (ii) the boum-

dary condition tha the relatve veloaty normal to the surfae of the body is zero ((W)r.R= U we t).
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It follows that these flows are of the type in which a is direcy proporti o to U and o0nwqwty

the integrals, 1. can be evaluated as

""ffi (

f I- -L + 1- 1 I 27rrvsin 05 &W= 1ir=ITs (7)
-0 3

Cjfrf:Iffjf -L)+[ -)]7 d k=rR2 p~r igri Leff&f (8)

tlwre M =YrR 2p peri tdevn9L

N ote that the added nss M, of the cylinder is equal to the mass of the fluid dislad by the body,

whereas the added nss of the sphere is one half of the displaced man

These am algebraically the simplest potential flows for which the value of I cn be evaluated How-

ever. it is conceptually simple to visualize how I --uld be evaluated for any flow provided the flow solu-

tion (the us/U values) are available. Note that, m effect one need only have available the solution for

the steady flow in the direction under consideration. This conmder-ANy smplifles the added mm cau-

lation for retilinear motion. Later we shall examine the more general case of arbitrary motion,

-. 2 RELATION TO DISPLACED MASS; VARIATION WITH DIRECTION OF ACCELERATION

In the preceding section it was noted that, in the ideal case of potential flow around a cirruler cylinder in

rectilinear motion the added mam is equal to the mass of fluid displaced by the cylinder This dwuld

be regarded as coinadental. There is no general conelation between added mass and displaced fluid

mass. As we have seen the added mass for a sphere is one half of the displaed fluid nm Furtw-

more the idealized potential flow past an infinitely thin flat plate (zero displaced fluid rm) acclenmaed

normal to itself has an added ass equal to the mass of a circular cylinder of fluid with a diammr

equal to the width of the plate.

Thus the displaced fluid nms may not even be a good first approxiration to the added ms (except
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for the case of the rwcular cylinder). Furtbenmre we sall see that, in general. the value of the added

mass depends on the direction of acceleration. For example, the idealized potential flow solution for

the infinitely thin flat plate accelerated in a tangential rather than a normal direction yields zem added

mass rather than the value descinbed above. A review of the available data suggests that a better (but

still very crude) first appoximation to the added mass of a body for a given direction of acceleration

would be the mass of the fluid volume obtained by taking the projected area of the body in that direc-

tion and evaluating one half of the volume of the sphere with the saine projected area (see Sections

4.2, 4.3). An improvement on this is included in Section 4.2.

One other complication will emerge in the following section when the complete added mass matrix

is defined, namely that the force on the body due to acceleration is not necessarily in the same direction

as the acceleration. For an unsymmetnic body acceleration in one direction can give rise to an "added

nrss" effect resulting in a force which has a component in a direction perpendicular to the direction of

acceleration. If, for example, one were lifting a body from the ocean bottom by means of a cable then

an increase in the lift rate could produce a lateral . tion of the body.

3.3 THE ADDED MASS MATRIX

Up to this point, most of the examples and discussion have centered on simple rectlinearnotion

However in general the response of a body to an additional force applied at some point and in some

direction will not be confined to motion in that same direcion. Instea there will be a general induced

acceleration of the body consisting of three translation accelerations A, j = 1, 2,3 in three perpendicu-

lar directions and three angular accelerations,A, j=4,5,6. Then the added mass matrix

Mi, i= 1-6, = -6 provides a method of expressing the relationship between the six force com-

ponents, Fj. imposed on the body by the inertial effects of the fluid due to the six posmble components

of aceleration.:

Ft= -MA(9)

The matrix MV m mst have added to it the inertial matrix due to the mes of the body in order to com-

plete the fornmIlation of the inertial forces If the center of mass of the body is chosen as the origin the
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body m ss matrx is symmetric and contains only seven different nor-zero values, narrely the mas

and the six different components of the moment-of-inertka matrix [Y il p.102]. However one cannot

in general relate any of the 36 difTerent components of the added mas matrix nor prove that any of

them are zero except in specific cases or for specific kinds of flow. Consequently an externally applied

additional force will in general create aceleration in all six components of velocity and angular velocity.

Thankfully it is rarely necessary to have to handle 36 different added rmas coeffiients. For potential

flow one can show rYih. p. 100] that the added mass matrix must be symmetnc since the system is

then conservative the syrmmetry also follows from the theorem of reciproty. This reduces the number

of coefficents to 21. However no further reduction is possible except for bodies with geometric syrm-

metries

The simplifications introduced by geornetne symmetries of the body are fairy easily established

Consider for example a body with a single plane of symmetry, for example an airplane. It is deariy

convenient to select axes such that this plane of syrnmetry corresponds say, the x3=0 plane. Then any

acceleration confined to this plane, namely any ,--mbination of A 1,A2 and Aa will produce no added

mass force Y. F4 or Yf: the only possble non-zero forces will be F1, F2 and Fe. It follows that for

such a body the following 9 components of the added m matrix will be zero:

MW=O for i=3,4,5 j=1,2,6 (10)

If in addition the flow is assumed to be potential such that the matrix is symmetric then Mj=O for the

same domains of i and J The number of non-zero values required to define the matrix is 12 namely

M . i=1-6 and M M3.3.M,.M16 and Mg (11)

Bodies which have two planes of symmetry (for example a hemisphere) yield a further redxicon in

the number of non-z7ao values. Suppose axes are chosen sud that both X2=0 and z3=O am planes of

symmetry. Then not only nus& (10) be true but also

Mfi=O for i=2,4,6;j=1,3,5 (i )

and again, assumrng potential flow M.=O for the same domains Then the only non-zero values which

-- ~~~~~~ ~ ~ . OAFnnlnimmmiill- -
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need evaluation ee

Mt. i=1-.8 and Me,MM (13)

The last two, which with M = M 2e and Mas=M represent the only non-zem o-dtgm tmIs.

correspond to the moment about the za axis generated by ameleration in the X2 direction anid the

moment about the z 2 axis generated by acceler~aon in the z3 direction In other words am the

body is mt symmetic about the x~z~ plane linear acceleration in either the xg or za diredion will

cause pitching moments in the zXz2 or zxzs planes.

A few simple bodies such as a sphere, circular cylinder, cube. rectangular box etc have three plane

of symmetry. By following the same procedure used above it is dear that the only possible non-zero

elements are

Ms., i=1- 6, Mj5,MjG, M2, M=,M3,MM (14)

and that if potential flow is essumed all of the off-diagonal terms are zero. Only in this sinle s of

three axes of symmetry and symmetry of the ms". x (see below for conditions on this) does the matrix

become purely diagonal so that there ae no seconnary induced acelerations.

It remains to discuss the precse flow conditions under which tilL ,.fabix can be iasuned to be sym-

metric and then finally to indicate how all of the elements could be evaluated

14 ADDED MASS MATRIX SYMMETRY AND SUPERPOSIBILITY OF FLOW SOLUTIONS

The astute reader will have recognized that the mere definition of Mv in Eq.(9) requres certain

aumptions concerning the nature of the flow and the ability to linearly superpose the effects (i.e.

fores) of acceleration in the six directions. The question of the minimum preconditions neemy in

order to write Equation (9) is one which will not be addressed here. It is however dew that these

preconditions are met as soon as one makes the assumptions necessary to evaluate Mg. To the authors

knowledge the only evaluations which exist require that the fluid flow is superposable in the following

sense: that the total induced fluid veloaty con be obtained by linear addition of the fluid veloaties

carsed by each of the components of the body motion or velocity. For this to be trie requlm that
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both the equations used to solve for the fluid flow and the boundary conditions be linew This Is not

true in general of the NavierStokes equations for fluid motion and therefore s prpowbity is not. in

general. applicable. However ther are two models of fluid flow which do sati fy this condition namely

(i) the potential flow model for high Reynolds flow [Yih p.100] and (ii) the Sokes flow model for

asymptotically small Reynolds numbers. In both cas the equations of motion can be put In llne-

form Furthermnore provided if one is dealing with rigid or undeformable boundaries the boundary con-

ditions are also linear. Only in these two linting ces can the added mm matrx be regarded as an

exact representation of the relation between fluid inertial force and body acceleration, In other types of

flow it could however be regarded as a reasonable first approximation. Case (ii) above is of interest in

flows such as occur in slumes or suspensions; however we sall from here on confine our rermrin to

case (i) which is of greater practical importance in ocean engineering.

W hen the flow is hneariy superposable, it is convenient to define UV as the induced fluid veloaty

caused by unit velocity of the body in the j direction (j= I - 6). Included hem am both the tran r

tion components, j=1.2,3, and rotational conrnients, j=4,5,6 of body motion. Then if the body

velocities are denoted by Uj, j = 1-' 6, it follows thai. the fluid velocity

'A =IV U (15)

Consequenuy one can write Equation (I) as

T 1 A

T= A, UjU, (16)

where the matrix A. is composed of elemnents

Aj* pflu.dV=MA (1?)

It m be shown Yih. p.102] that the matrix Ap is in fact the added mass tix M. Itis certainly

clear that the diagonal temn A I,. A. A are identical to the added mses evaluat~ed in Section 3. (To

est abish this define the diredion z of Section 3 as either z 1.z2 or z3; then a and ik ere identical

and equal to the velocity i used in Section 3)
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Furtlmim it is dew from this evaluation that the added m mdix must be ynmstc izM

rveng j and k in Equation (16) does not dange the value of the integral. Hencu; 1p1pomility

implies symmtry of the added rm mix.

3.5 EVALUATION OF THE ADDED MASS MATRIX

The exprsion (17) will permrt the evaluation of the entire added rr niix Indeed it *uld be

particularly noted that use of this result only requires the solution of steady flow problems ince u4 is

the fluid veloaty due to unit veloaty of motion of the body in the j direction. Consequently the solu-

tion of six steady flows for j1- 6 allows evaluation of all 2 distinct values in the added manmatix

Hence one can make use of existing methods for solving steady flows around bodies of quite complex

geometry in order to evaluate the added mass matrix. References 1.2,3,4 and 9 provide infomaion on

these existing methods.

One other form of Equation (17) can also be valuable in dealing with potential flows. Then if rp

represents the velocity potential of the steady flow due to unit motion of the body in the j-direcion

then it follows that

Substitution into Equation (17) and application of Green's theorem leeds to

A =-p f,, 'Pk j (19)
s an

where n is the outward normal to the surface, S which represents the body surface. In rnuy cra of

steady potential flows around complex bodies it is dearly eder to evaluate the surface integral in (19)

than the volume integral in (17). Indeed the form (19) is ideally suited for use with potential flow

codes stxh as the Douglas-Neuman code.

.6 VELOCITY AND ACCELERATION OF THE FLUID RATHER THAN THE BODY

A 1! of the preceding discusson was centered on the inertal forow due to acleration of a body in a

flud This review would be incomplete without some comrent on the ces in which the fluid far



-11-

from the body is either (i) moving with a constant. uniform velocty or (ii) meraling.

Exantee (i) first It was implicitly inumed in all the preceding seclons that the ftlud far from

the body was at rest. Otherwise dearLy the integral defining T (Eq.( 1)) would have an infinite value

and the sibsequent analyss would be meaningless. If, as in case (i), the fluid far from the body bes

some uniform constant velocity denoted by Wt then it is clear that since the inertial force ceanot be

altered by a sirmle Galilean transformation it follows that the proper definition of T under these dz-

T=-%- Wt)(74 - Wt) dV (20)

The value of this integral is then finite and the oonundnm resolved. In other words the ppropriate

to be used in Eq.(1) is the velocity of the fluid mloe to As j idd abcipjirpumom bocl* provided the

latter is constant with tire. This leads to no alteration in fluid inertial forues A rgorous expression

for the forces would be

F '-Mv (Uj - Wj)=-MV~dI 1 (1

but snce the tUne denvative of W is zero the original relation (9) iq recovered.

However e (ii) in which W is a function of time is more complex. It is irriortxit to Identify

the fluid inertial forces in this case for two reasons. First it is of prftical importance in analyzing, for

example, ocean wave forces on structures. Secondly, many of the inportant expenmentR on unsteady

forces ae perfomied using a acelerating fluid rather than an accelerating body (e.g. Refs 10 and Ii).

W e begin by visualizing a cese (i) flow with a constant uniform fluid velocity, W, (j=1-o 3). far

from a body whose center of volume is moving at a velocity, Uj (j=i-.6). The body is also

accelerating with components. A. The flow satisfies the Navier-Stokes equations for flud notion T

and the solid body boxxdary conditions. The fluid inertal fores in this case are given by Eq.(21).

Now consider a slightly different flow whose velocities ae identical to those of the first flow but in

whichi an additLonal uniform acelertion j1, 2.3 is appied globally to both te fluid and body. Now

dW'
the auAl acceleration of the body is (A, + ). The Navier-tokes equations of fluid motion and

the actua e~elen-o of the ody ts (A + d4 a)
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the solid body boundury conditions mr identica for the two lows ut thit whom the prm'm. A

dWl
appears in the equations for the first flow, the expreson p-pr, te in the equation for the

second flow. Consequently the stresses and force which the fluid exerts on the body am idential

except for an additional contribution in the second flow due to the additional presure, pzx W. When

this is integrated over the surface of the body the additional force on the body tms out to be

pVO -w Lwhere VD is the volume of fluid displaced by the body. Consequently the inertal for is

+VdWt
Ft =-MqAj + pVD (22)

But as stated previously the acceleration of the body in the second flow is now A, + dljA*

and hence in the case of the second flow

dUj A - (23)--=Aj + e (23)

where dW 'AJ is the acceleration of the fluid f . , rorn the body. Substitution for A, in Eq.(22) pro-

duces the fial required result for the second flow:

- -M W- + (MV + p VD,) =,

where 6V is the Kraneckerdelta (dt=1 for i=j, dfj=O for is).

Therefore the "added rms' assoaated with the fud accelerationm dWj'/d in the second flow is the

sumrn of the trb added mass M. and a diagonal matrix with components equal to the o ft the dis-

plaed fluid, p VD.

However we rmut now examine nore closely the general validity of Eq.(24). The first and second

flows desribed above were oswmd to have identical fluid velocity fields at the moment at which the

forces were considered. This will iwt be true in general for solutions of the Navier-Stoe equation

even though the body velocities and far field fluid velocities are identical. In general the solutions to

the Navier-tokes equations will also depend on all of the previous time history of the body and far
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field flid motions and consequendy the two flows will rmt in geral have dmUc fluid velocty JMdu

There are however two inportant exceptions to this and in both cases Eq.(24) will be true. First if the

viscous effects are neglected then the fluid has no memory and the fluid velocity fields will be identical;

thus Eq.(24) holds for potential flows. Secondly if the prvious hitory of the vni,* velocty,

(Uj - Wj) is iden l in the two flows thin (24) will hold regardlis of viscous effects.

Therefore, in aimimary, the fluid imrtial forms due to any contination of body or far fild fluid

acceleration (dUj/dt or dW.,A/) can be exactly represented by Eq.(24) if either (i) viscous effects

arr -eglecLed or (ii) the matnx M, represents the fluid inertial forces for the case in which the fluid is

at rest far from the body and the entire previous history of the relative motion (U, - Wj) is identical

to that of the flow under consideration. The latter is indeed the case when comparg two ces for

example, in the first of which the far field fluid motion is sinusoidal in time and the body at rest and in

the second of which the far field fluid motion is at rest and the body moves sinusoidally. Consequently

the "added mass" in the experiments of Keulegan and Carpenter (Ref.10) in which the far Md fluid is

accelerated sinusoidally should yield (Mj + p whereas the experiments of Skop, Ramberg and

Perer (Ref. 15) in which the body is accelerated should yield, M3 . To trensfer results from one o to

the other requires the addition or subtrwtion of the displaced rna:- For the examples of Section 3.1

the values of (MA + p VD) would be 2oprR 2 per uut length in the e of the yinder and ?4otR
3

in the cse of the sphere. Sometimes the total (Mt + p D) is referred to as the added mass arid this

can result in some confuson Strictly speaking the term added mass shouid be reserved for Mv only,

or in other words the case in which the body is acelerating and not the far field fluid

3.7 THE EFFECT OF A NEARLY SOLID BOUNDARY

The effects on the added mass due to the proximity of a solid boundary will be addressed in rom detail

later (see Section 4.4). It is generally true that the presence of the boundary tends to incease the

added mss (see Tables I - V) and sometimes this inceae can be very large. Hem we merely rearxk

that the preceding theoretical results am equally applicable in the pIeece of a solid boundary with the

following addenda

L . . . . . . , . . . . , . . .



-14-

A. The reducions due to geometric synmuttes dismmd in Section 33 only qppy to total geomrc

symmetes of both the body and solid boundary.

B. Potential flows with a plane solid boundary can be modelled by refing the flow and body in the

plane and treating the total flow due to the body end its inage. Equivalence of the two problens

allows the transference of aded mass coefficents from one to the other. As an exewpie of this

see the ewes of two cylinders and a cylinder plus a plane boundary in Table 11.

18 THE EFFECT OF A NEARLY FREE SURFACE

Unlike the presence of a solid boundary, a free surface boundary adds considerbly to the onpleidty of

the problerr This is due to the fact that. in general, the boundary condition is nom-linew and hence

superposability is rot satistied. A s a consequence the dynarmc behavior of bodies near a free surface is

a specialized area in which the literature is also rather specialized because of the complexity of the fluid

flow problems. Though this subject is outside the scope of this report it is necemry to make a few

brief remarks and, in particular, to identify the conditions under which one must auont for free sur'

face effects.

In the ewe of floating bodies the reader is referred to excellent reviews of the analytical tediqus

by W ehausen (Ref.12), Newman (Rd. 13) and OgIvie (Ref.14). Submerged bodies ae only slightly

eamer to handle. Some data on submerged bodies is given in Table 111. It should be stressed that these

examples are only pertinent to the inertial forces generated when accelerating the bodies ftomst Any

prior tranlation or rotational motion of those bodies would have generated free surface waves which

would m turn affect the unsteady loading on the body. This represents the rnjor complication intro-

duced by the presence of a free surface. It is however dear that if the body motion is suftl4ently slow

(characterized by a veloaty, U, say) then the waves created will be negligibly mrJ md these prior

history effects would also be mnall. This requires that the Froude number, Ul(gd) << 1.

The results of Table III do allow one to estimate what constitutes proxim ty to a free surfam provid-

ing the above conditions hold It can be seen that the free surface has little effect (less than 5%) pro-

vided the ratio of the depth of the body to the body dimension is greater then about 4. For lesser
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depths the added nrss first increases as the ameleralion of the fluid between the free surfac and the

body inceses but then decreases when the depth is less than about one body dimnmmon became low

fluid is bng accelerated

3.0 THK EJ7FET OF FLUID CON PRESSBILITY

G enerally the effects of the conpvmrbity of the water on the added m cn be neglected in most

ocean ngineeg applications. This is beaemse the conressiblity does not begin to aflet the fluid

flow until the M ach number ratio of the typical fluid velocity to the velocity of sound. q in the fluid

exceeds a value of at least 0. 1. In unsteady flows one must also cormder a psmeter computed as the

typical aoderation ties the typical body dirnenon and divided by c. Again one would not noiy

expect any compressibility effect if this is less than 0. 1.

Such conditions am almost always satisfied in ocean engineenng applioions. However it is possble

that the presence of a large quantity of bubbles in the water could safficently reduce the sonic velocity.

c. to such an extent that the added ms would be altered by the oornresibility of the wter/gas rmx-

ture

4,
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4 REVIW OF EXISTING DATA ON ADDED MAS

4,1 THEOKRZTICAL POTENTIAL PLOW ADDED WAS=

By far the largest category of analytical results for added a ne those tiwited fwo bodies i an

inflnite fluid dorman msming the flow to be potential. The rmnjrity of these results are obtaied by

methods analogous to those descibed in cton 3. Bodies for whid the steady flows ca be gerted

by superpostion of an aray of potential flow sngularites (soures, sinks doubiet potential voatiow

etc.) are particularly corripatible with the use of exprssion (18). Such metods ame desibed in Rd.9

and in many mekinics texts (e.g. Ref. 1, p. 104). A particualy useul tabulation of rrny of the avail-

able results is given in a paper by Patton (Ref.8) and his Tables 1 and 2 am reproduced hem as Tables I

and Ill. Note that .he .th i colum of these tables contains the added mam denoted by vh; the

values given jorrespond to the diagonal term in the added rniss rnatix. Mv, the direcion of

acceleration *xrg secded in the second columrn (No off-diagonal corriponents of the added mss

natrix ar fistw. -ome results ar also listed for bodies on or near to a solid or free surface and corn-

rrent on these is delai until later Patton has induded both theoretical potential flow added res

and exermrjally determined added misses in Tables I and IllI. These are distinguished by the letters

T and E in the fourth column of these tables. Another excellent source of tabulated added rnrses is

given in a DTMB report by Kennard (Ref.9). Kennard's tables for added nmm coefthents am atta ed

to this report as Tables 11, IV and V.

Though not exhaustive Tables I through IV provide a substantial reference list of added mmee. It

could be argued with some justiftcation that these tables are nore than adequate for mrost enging

purposes provided the body under analysis is not in dose proxinity to a solid or free snface. The

rermaider of this report will concentrate on the limitations of this analytical knowledge in tom of

boundary effects and real fluid effects (e.g. viscous effects). However before poceeding to them dis-

cuirons two further points should be made.

First Tables I through IV could be supplemented by the potential flow methods described in Sedton

3 and detailed in many references (e.g. Ref.9). Modem potential flow conpter progrwzu
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(e.g.Dougla-Neuman code) for s a* flows could radily be adpted for this purpose as di ed In

Section 3.5. The capability to do this might be important in cicumstcs where acurate added

mssees are required for bodies of unusual or complex geometry or in ccmstances where the off-

diagonal terms in the added mass manx are deemed important (the tables contain virtuay no informar

tion on off-diagonal terms).

The second point is that approximate values for the conventional or diagonal added mass terms for

bodies of complex geometry (for example, an airplane) can be obtained by combining the added mes

for each component of the stiucture (wings, fusilage, tail, etc). Such a strategy is outlined in Section

4.3.

4.2 SENSITIVITY TO THE GEO IETRY OF THE BODY

The diagonal terms in the added ma matzix (i.e. the conventional added nsses) are relatvely

independent of the precise geometry of a body. For example, when acelerated normal to their longitu-

dinal axes, cylinders with any elliptical cose-section have an added mass equal to that of a drLaw

cylnder with the same width norml to the direction of aceleration under consderation (see Table I).

Cylinders with more irregular rectangular or diamond shaped cross-sections deviate somewhat from this

nile however the deviations are rather unpredictable. Corrme for example the f at that the rectangu-

lar and diamond shapes in Table I show opposite trends as the ross-secdion becomes more streamlined

in the direction of acceleration W hen the ratio of cross-sectonal dimension in the direction of

acelertion to that normal to the direction of acceleraution is about 5 the rectangular shape bes

increased its added mass by a factor of 2 whemas the diarnond shape has decreased its added m by

a factor of 40%. The unsbstantiated opinion of the author is that the expennental values would show

less deviation due to the effects of fow sepertion

D espite these deviations, a reasonable first approximation to the translational added rsn Mg, for

two dienimonal bodies (large aspect ratio of length L to cross-sectional dimension. 2 ) would be

the rms of a cylinder of fluid whose diaeter is the same as the width, 2at. of the projected area in

the direction of acceleration. zt:
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Mo pir(aj) 1 (25)

Consder therefore the following empiricl approximaion for arhtrry three dunwpii bodies

tht the aided maw for a palcular direction of ac~eleration. A. is given by the volume obtained by

rotating the projected area of the body in that direction about an axis defined by the snaw of the two

pnncipal dimensions, 2ek, 2k, of the projected area For an ellipticel projected area this would yield

Af*=-P'T,(at' 'h ek(26)

wbere there is no implied surmmaton over the index i This would yield a reasoably cosmrvahve

approximation for the preceding case of the cylinders. However it would substantially overestimate the

added mass for a body like a sphere which has a small ased rtio. Then the above estimate would be

twice the potential flow value. Perhaps a better emnical approximation would be

-S 4 pir NfAT (27
(bt + q()(

which would then predict both the cylinders arnd .,e sphere corrtly. Testing this against the data for a

prolate ellipsoid arnelerating 'broadside on" (see Table IV) we find a value of the added maw usng

Eq.(Z7) which is within 7% of the exact value. Further improve.-rnts could dearly be made but ae

probably of minor value considering the other Unceanties discused below.

4.3 BODIES OF COMPLEX GEOMETRY

The result (Z7) of the previous section suggests an extension for the purposes of evaluating the added

mass for a body of complex geometry (an airplane). Though it would require further detailed eulyms

and testing it would not be unreasonable to suggest that a complex body be considered disesmrbed

into its prtncipal component parts (wings, fuselage, tail) and that the added msses for each conmpoxent

be evaluated for three perpendicular directions of acceleration using the technique outlined in the previ-

ous section Then we muxt asc whether it is approxdmtly correct to sinply add the added masme for

the components in each of the three directions From an engineering point of view it seeme remonable

to do this However it is very diflalt to give any quantitative mniasure of the error in sutch n estiriate
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due to the intermton of the coiponentL The case of two l el cylinders touching eah other which

is deteled in Table II, provides a partioler harsh test For directions parallel to and nortml to the

plne of the axes of the cylinders the enors would be 35.5% and 9 respectvely. But tis dizray

dernonstrates that the two cylinders together should be treated as a single compomnt then the errors

am sgnificantly smaller namely 29. and 14 respectively.

M uch more reasoable tests ame provided by the winged objects in Table III and we shall, in pa itc-

Jar exarmne the values given in Item 3, Table I. Taking the individual components (two flat plates

and an ellipsoid) and using the tabulated added masses of these individual components in the case

N=0.5 one amves at a value of K of 1.293 This is within 5. of the actual value alculated namely

1.24.

Further tests would be needed to establih confIdence limits on this superposition method but it

does not seem unlikely that one could confidently predict potential flow added messes for complex

bodies to within ± 30% using the methods outlined above and empirical forrnraa m.ich as represgted

by Eq (27).

4.4 THE EFFECTS OFA NEARLY SOLID BOUNDARY

The diuston in Sections 4.2 and 4.3 was confined to bodies remote from a solid boundary. It is dew

from the various examples given in the tables that the presenee of a solid boundary can cam subat6 -

tial increae in the added mass. This is due to the necessary increase in the fluid aceIerbom mirnedly

in the region between the fluid and the boundary. For exaene from Table 11 it is own tmh a

rass for a dzuilr cylinder (radius, ai) is ineeeed by a factor aL/2h2 for a wall at a dista ce h

from the center of the cylinder. The result presented is only arppximate and requnires < 1 . If

the body is brought closr to the boundary the added i n nrees at an even reater at e

one develop@ a 'M1lrx' or narow gap between the body and the wall in which the fluid acoderdfon ca

be very lare indeed.

From a prectios engineering point of view theM is a pretty of dsa for these exturn corlditiom of

dose prodxtnty of a body to a solid boundary A simple example will illustrate some of the iwltc
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effects of the proxinity of a solid surface on the Wertal forces required to move a body way from that

surfac Corder the two dirnensional problem of a flat plate of width. 2 lying on an ocen ftor.

A vertically upward force, F. per unit length of the plate is applied at the center of the plate to lift it

*ay from the floor. Due to this fore the plate has rsen to a uniform height h (t), above the floor

at time L The velocity and acceleration of the plate in the upward direction are therefore dcAt and

9 d%4 w(see Fi2).

Figure 2.

- * .. . Ct + . . .

. h(t)
7 '77 2 77 -7777-"-7-7 7-T 77 77Z,7P ' , Y-K ,- 77 - 777 7/ 7-

x

This problemn could be visualized as cdreric of any fartly flat object lying on the ocm ftr.

Typicly only porltons of the urdersuface would be in contat with the ocean floor However one

could visualize that Prior to application of the force there is a typicol average spertion distmA , ho,

between the undersurface and the object s5ltng up of the object could, of cours, make hc very

small. In any cesorme ho would be pertinent to the mnornent. t=0, when the lift for is alied.
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W e concentate here on the dynics of the body while the sepation. i very m=11 oonpald

with the Iateal cdimnson. 2a of the object bease it will be seen that theme the mcart otdc

condition Then upward velocity of the plate, chAfA will genme much' larger honizmta vdootim

u (Fig.2), in the gap then vertical velocities and hence continuity of m in the gap requires

Ch (28)

and the morenbim equation for the fluid in the gap in the absence of fnctional or viosoo forces yields

I p 2rsH + -L -2 (1L)=o (29)
p 2 Ox h Bt

where p(xt) pressure at any point, x, in the gap. Substitution and integration yield the following

form for the pressure distribution in the gap

+ - h (30)

where pE isthepressureattheedges, x±a. Whilethegapissrl m Rp willbeaproximatelyequal

to the ambient pmesair, PA, and the pressure on the top-side will deviate ruch less from A then the

pressure p in the gap. Consequently by integration using the relation for A one an obtain the

downward inertial force or added nss force, F, imposed by the fluid on the plate (per unit plate

length)

Compar this with the known irtial force on the plate in the absence of the solid boundary narely

pirr 2 02h/at2 where OAMht 2 is again used to represent the vertically upward aceleration It is dew

that the magnitude of the former given by Eq.(31) wil typically be very mud larger than the latter by

the large factor, t/h. Of course the preceding analysis ceases to be valid when h approacs m. But

it is dear that as the plate is raised the added mass per unit length begins at a very large value of the

order of pa3A.O and will rapidly decrease with h so that it asymptotically approaches a value of the

order of paz when h is of the order a.
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It is of interest to exaine, briefly the consequences of this behavior of the fluid rier to es If.

for simpliaty one negleds the mass of the plate itself, then the upward force applied to the plate by the

cable will be equal and opposite to the fluid inertial force. For illustrative purpose suppose a coistant

upward cable force is applied Then integration of the equation of motion mWesented by Eq.(31) if F

is now visualized as the cable force yields atime history h(t). given by

cos?t 3F 2()

where the initial conditions h=hc and ah/4=0 at t=O have been used. It is redily seen thaL this

leads to a kind of "catastrophid' release from the bottom in which the upward acceleration increas

with time. It is unlikely therefore that a constant uplift force could be maintained under these ar-

cunrtan. Consequently the actual initial motion would be dependent on other factors such as the

cable elastiaty.

The author has, as yet. encountered little in the way of analyss of such problems and suggests this

as an area deserving further study both expeimentally and analytically.

4.5 VISCOUS EFFECTS ON ADDED MASS AND DRAG

The previous sections of this chapter have deliberately avoided reference to a further complicion

caused by the viscous effects in the flow around the body. These viscous effects on both the fluid iner-

tial and fluid drag foroes have been the subject of a number of detaled stndies as represented for exn-

pie by Refs.lO, 11 and 15. The essence of the complication is th: ' certati. ; Zirnes of flow the

viscous processes of flow separation and vortex shedding cause radical modifications to the forces

expected on the bass of mple addition of fluid inertial and fluid drag forces. The latter approxirneion

is embodied in what is known as M onson's equation (Ref. 16) in which the total force on the body, F.

is expressed as

Uj - pAC[U 1 2

where C# is a lift and drag coeflcient matrix, and A is a typical area for the body. This equatlon is
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normally quoted for only one dircton at a time and is written as

r=_ M  dU - pACDLU1 2  (34)

ct 2

where CD, U and dUl refer to a drag coeffient. the velocity and acceleraion in line with the

force. It might be expected tha both M and CD would be independent of the spedf1c notion undr

conrideratior. However Keulegan and Carpenter (Ref. 10) have observed experimentally t this was

not the case and that substantial changes in M and Cv occuned as the rate of accelieron

represented by the penod, T, of their sinusoidal motion was increased such that U T/D beoam of

order one. Here UM is the typical velocity (the peak velocity of the sinusoidal motion) and D is the

cylinder or plate width It is signiflcant that all of their data was obtained within a range of Reynolds

numbers UDA' (v is the kinematic viscosty) between 5000 and 30,000. Even the steady flows past

bodies in this Reynolds number regime experience substantial unsteaidiness due to flow separation and

vortex shedding.

Keulegan and Carpenter found that the "effedcie" value of the added mass for cylinders was dose to

the potential flow value (piTD 2/4 per unit length) for U, TID below about 5 but deremd rapidly

with increasTg UV TID becoming negative for a range of Um T/D between 10 and 20 (Note that

we have subb-acted the displaced fluid mass from their results to get the true added m in line with

the disa.ssion of Section 3.6) W ith further increase in UM TID positive values simi to those for

U, T/D< 5 ar recovered The drag coeffident, CD. shows a lage increase for the same range of

UI T/D betweeen 10 and 20. Flat plates exhibited a different pathological behavior of the added rass

and drag coefficient. No systemtic variations with Reynolds number, UMD/'. could be detected.

Skp, Ramberg and Ferer (Ref. 15) have also carried out experiments on anumidally osdllatng

flows except that the body rather than the fluid is accelerated. Their results do not agree with those of

Keulegan and Carpenter. For values of Um T/D between 1 and 12 they found that the fluid Lnrtial

fore agreed very well with the potential flow value. Moreover the variations in the effedive drag

codlacent could be aocurately predicted by considering the instantaneous Reynolds number at each

point during the cycle, using some appropriate form for the corresponding instentmuous drag and



-24-

thereby synthesizing the overall drag coefferit

The results of Skop, Ramberg and Fer oannot be ruedily roonciled with those of Keulpn end

Carpenter. The Reynolds numbers for the Scop, Ramberg and Fear expeirments am in the ruige

between 2 30 and 40,000 and ae therefore sirnrlu to those of Keilegan And Carpenter. It is quite dew

that further detailed measrements using more sophisticated mesurement arid data analyss tedniques

are needed to resolve this question. Though it has little value, I have formed the very tentaive opin-

ion that the experiments and data reduction techniques used by Skop, Ramberg and Ferer are superior

to those of Keulegan and Carpenter and therefore I would place more confidence in their rsults. On

the other hand the data of Keulegan and Carpenter is much mom widely known and used, this I beieve

may be unfortunate.

For the present it is necesary for engineering purposes to be aware that pathological behavior of the

fluid inetal forces wVi occur for body motions whose typical amplitude is greater than about haf of

the body dimension.

Before leaving this subject it is of value to Secord a few of the results of the experiments caried out

by Sarpkaya (Ref.11). He osillated a cyiinder in a direction normal to the direction of an oncoming

strearn of fluid and observed pathological behavior for VT/D ( where V is now the steady stmm

velocity) between about 3 and 10. Furthernmre, in one of the few experimental meaurements of off-

diagonal terms in the force matrix he observed the oscllations in the force on the body perpendicular

to the direction of osillatory motion to be less than 7% of the steady drag in that direction.
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5S(UEARY

The analytical bacground of the mass marx descrig fud fores de to amr2on of the

body or the fluid ha been reviewed. It is shuuw tA the use of this concept is rigorously Jified only

in the ee of lineay superposable fluid motions with ngid boundaries In the context of ocemn

engineeing problems this restricts the analysis to that of potekal flow and. indeed, almost all of the

theoretical predictions are computed from potential flow analyss. For empirical enginheezr prpose

the concept has also been used for reel flows with boundary layers. sepatiion ard vortex shedding.

The mjority of potential flow calclations of aided mas are for bodies accelerated in an infinite

domain of irxxnpresmble, inviLd fluid. M any of these am included in Tables I to IV. These tables

provide a substantial reference list which may be more than adequate for many engineering purpoes

provided the body is not in dose proimity to a solid or free surface boundary. Furthemore ice the

added nmm is generally rather insensitive to the detailed geometry of the body we have some prelin-

imary suggestions as to how the added ma for a body of complex geometry might be estimated As

detailed in Sections 4.2 and 4.3 the first step is to decompose the body into major components. The

added ms of each may then be estimated f or each direction of a=clerehon from the pincipl dimen-

sions (2a,. bZ) of the pijected area in that direction and the apprvuxate formula (27). The added

mss for each component in each direction would then be arthmetitelly summed I believe it night be

possible to make predictions within ± 30% by this means If better awrmay is required then we have

indiceted how modem potential flow codes (.e.g Douglas-Neuman code) deigned to calculate steady

flows might be utilized to obtain better results

D ata is scarcer for the cases when a solid boundary or free surface is dose to the body. In general

moditlostons are required if suci a boundary is within four major body dimensions Free suface

effects ae quite complex and are not covered by this report However it is aown that a solid mirf ace

(ocean bed) con have a drmatic effect perticularty when a body is being reised from the ocean flor.

D aia Is also scarce for the off-diagonal elements of the added mss metrix. Virtually no results for

these elements appear in the tables Consequently it is almost Impomible to amess whether these

--------------------.-- --.. ~1-
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interation terms ae importatt in prcicel problern. Again. however, use of the or tid m-

puter cdes would paemt better evaluation of the need to conider the of-diagonal term

The relatonship between the forces when the fluid is axieleratbng post the body as opposed to the

reverse is discussed in Section 3.6. It is shown that a relation can only be firmly establlshed if either (i)

superposabdity is possible (e.g. potential flow) or (ii) if the entire previous history of the relative velo-

city is identical in the two caes. Then the ppmrae fluid mm in the case of fluid amoloem on is

equal to the added mass plus the displaced fluid mn

Finally it is dear that viscous effects in the form of boundary layer sepration and particulaly vortex

shedding could pomibly cause radical departures from the theoretical, potential flow predictions. The

data on this is limited and contradictory. For the present one can only point out that pathological

behavior mWht occur in certain ranges of frequency (or typical time of acceleration) and Reynolds

number.

']S
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a RECOiEIDATIONS

It seems appropiate to suggest several Frem of egirwaiM limportnce in which furthe n.Ly

empincal and experimental studies would provide valuable informfion,

A. There is a relative paucty of good experimental data in the open literature which ca be used to

evaluate the real fluid effects of viscosity. The data which does exiAt is often contradtory Such

experimnts are not easy and are frought with pitfalls. However both meeurenunt teduuqm and

data processing methods have substantially improved in the last five yeara It therfore aems

approptiate to suggest further experimental programs which night help to provide some solid infor

mation that the engineer could use. At the present tine there is little concrete knowledge which

the engineer could use with confidence.

B. The theoretcal predictions of added mass from potential flow provide a good data base for use in

estimating the diagonal terms in the added ma matix. This data base would be utilized to po-

duce ernmical methods for use with bodies of complex geometry. This could result in a simple

and useful computer code for this purpose.

C. There are however very few calculated values for the off-diagonal terms in added mass nmtrma I

therefore recommend that in order to build up some data base for off-diagonal terms and in orde

to allow more accurate evaluation of the diagonal terms for bodies of complex geometry some of

the modem potential flow computer codes (e.g. Douglas-Neuman) be adapted to evaluate the

entire added mss maix.

D. The dramatic effects which can occur during separaion of a body from the ocean fioor should be

further investigated both analytically and experimentally.
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TABLE I

(From Reference 5)

ADDED (HYDRODYNAMIC) MASSES FOR TWO-DIMENSIONAL

POTENTIAL FLOWS ; Reference numbers are given

under SOURCE.

TRANSLAT:C .J h70,DY.1 CM~ASSJ ,1*ECTI~ l PIP C~i, T LENGTM

6

71'

r" b

T.-. 2 M T T

'I - l n

2.2 re . %7 T
7, 6

IT

2. 1

i"... ... ,,, : . .. ... .,__-__i 6 r"
.-' - lI!I _________ ___

' I-- . I- - ,'I
,2 .I ' " "

-. :,-__Ia_~
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TABLE I (continued)

T... ' ,PEI ; '',!T UKGTA

\'eric a: T I
Z m .85a 

2  6

b ,'b -- .76 a 

1/b- 1/2m .67 "7 pa

Kf--l - "A

-2aI

n! b L"
;  M, .161 ,

Ve.rtica i

- ---- 4. "- "urf.,ce)

L'.L, . , _ l. .f,.1- *o f r ae I , r* p a6

I tri

•" r frtce)

a I1 - . C 
a l Ip 

a 6

-. s r fa mh a:

1,'-- 1-8i n, S)ri-1
p %2

cb-.25 6- 2.90 -rpa
2

Verticl
z ic 2.6 M"

-3.6- 
2. 11 rr.F

_ _ _ _ _ _ _ I _ _ _ _
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TABLE I I

(From Reference 9)

ADDED MASSES FOR TWO-DIMENSIONAL POTENTIAL FLOWS

(See Reference 9 or TABLE V for notation)

Circular cylinder in translation perpendicular to its axis:
1 2

T - pyr a 2 U2, as in Equation [68i],

p 2, k.

Elliptic cylinder in translation parallel to an axis, called the a-axis, either a>b as shown
or b>a:

T, -- ,pT b2 U2, from Equation (841J,

Al'= pI ab, k - b/a.

Plane lamina in translation perpendicular to its faces:

T1 =pt a 2 U4 , as in Equation [86b],

kM1' - pir a2.

Elliptic cylinder rotating about its axis:
1

T . Opr (a 2 - b2 ) 2 
W

2, as in Equation [106z],
16

Axisof I 1  pn ab(a 2 +b 2), k - , 2

- Rotation 4 2ab (a 2 +6 2)

Plane lamina rotating about its central axis:

Rotation 1 4 2
RSof = "- pff a t, as in Equation [106a '),

16

k1' pr a 4

~- taJ ,.
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TABLE II (continued)

Plane lamina rotating about one edge:

9

Ai fT 1 - - pn a 2, as in Equation [106b1"

Rotation with I - 1,

Apparent increase in moment of inertia 9 pl a 4/8 3

Moment of inertia of fluid displaced bya 3 4 a4 /2

cylinder of radius a rotating as if rigid

about a generator

Fluid inside elliptic-cylindrical shell rotating about its axis:

Axis of 2
Rotation T,1pra (a2 _ b2)Q

Rot t6 1 a2 + b 2  as in Equation [105m],

.(a
2  22

-= lpnab (a2 +b 2), k- - .
8 a2 +b2 /"

Fluid inside semicircular cylindrical she). ,otating about axis of the semicircle

AxiTo -4 17 - -L p a4 W,2 as in Equation [102e],

Rotation

Fluid inside equilateral triangular prism rotating about its central axis:

Axis ol 1 46o si qato 13]

1 qutono03n
1

/;-P I k6~ 5 .61

• 
P  3 4,  k . 5 "

Lamina bent in form of circular arc, in translation at angle 0 with chord:

Flui2

F rI. U TipndU2 s 2 U as in Equation [780.

L-- 2b
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TABLE II (continued)

Cylinder with contour consisting of two similar circular arcs; see Section 89.

9- 18O f

A-._e3_ gee Cross-sectional area S- [2(1-f) v+sin 2 0
9co- 180f ~2(1f 2

degrees sn 2 0

1. Translation parallel to chord AB. T7 pk SU 2, k,-- - - -

2. Translation perpendicular to chord AB: TI =-Pk SU 2 , k= +1
2 3 f

Cylinder with contour formed by two similar parabolic arcs meeting perpendicularly; see
Section 91(d):

M"I - h2,  r--kM 'U 2 ;
3 2 1

4 4

1. Translation parallel to chord AB: k= - 1 = 0.525.
IT

3

8K 4

2. Translation perpendicular to chord AB: k= - - 1 = 2.049.
rT

3

Here K = 1.8541, the complete elliptic integral of modulus 1F1/2.

Cylinder whose contour is formed by four equal semicircles:

1
Ml - (2+ r') p A2; for translation in any direction

A 4

T,-k 1 12, k=- K 2-1 - 1.100.

T 2 2+v

For K, see the preceding case. See Section 91(e).

Double circular cylinder, each cylinder of radius a; see Section 90:

B M'- 2pn a2 .

/i2  1
2

1. Translation parallel to line of axes AB: T1 .pIra 2 j 2( ) , k.6-1-0.645.

2. Translation perpendicular to line of ayes AB: T,-pyra 2U 2  -1 k--- -2.290.3 3

L"
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TABLE II (continued)

Cylinder of radius a sliding along fixed plane wall; see Section 90.

Tn 1 ..- , 2 u2 -1 2

Wall M2
A1"=pn a2 , k - 1,2.290.

3

Cylinder of rhombic cross-section, in translation along a diagonal; see Section 91(c).

M1 = p s 2 sin 0

_. 1 20 r (3/2)
46 ZT 1 =-kM U2, k-- -12 1 sin 0 (1 F )

Here 0 is in radians and r stands for the gamma function.

Rectangular cylinder in translation parallel to a side; see Section 91(b) for references.

M,"- kM "- apparent increase in mass,

v_

ml''= p Vw2 /4 or Ml1" for a plane lamina of width w.

h,/w - 0 0.025 0.111 0.298 0.676 1.478 3.555 9.007 40.03

MI, "/'1lo" = 1 1.05 1.16 1.29 1.42 1.65 2.00 2.50 3.50

Circular cylinder with symmetrical fins:

1
T kM1 U

2  as in Equation [91g),

M -1"Pff4 D2-  k-1+ h _D)

4 \ A

Cylinder of radius a in translation and instantaneously coaxial with enclosing fixed cylinder
of radius b:

Fixed b T -1 a2u2 b2 + a2 as in Equation 104f]

& 2r b2 -a 2

Fluid b.a
2 

b2+ a2

M)- prr a2,  k
b2_a

2
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TABLE II (continued)

Cylinder of radius a in translation in any direction across axis of enclosing fixed square
cylinder of side s, a/s small; see Section 91(1).

. __;a 2

A~ ~ T=pva2U2 (+6.88-..
U 1 - a

2

Fluid M;- p" a 2 , k=1 +6.88 . ....
S82

Cylinder of radiui a in translation in any direction near a fixed infinite wall, a/h small:

.T"P1 pra2u 2 1+ .... as in Equation [95gl(-2 \2h2)

Fluid
2 a

Wall l'-pna2  k.1-+

2h2

(Only the force required to accelerate the cylinder is considered here.)

Cylinder of radius a moving symmetrically between fixed infinite walls h apart, a/k rather
small:

4 Wall T I 2 a2U2 1+ 2(-a ) , as in Equation (46q]

2ld 2 2 a

.il'lz.//,"4 1  .p a a 2 ,  k- 1+ ...

Wall 3 A2

Plane lamina of width b moving symmetrically between fixed infinite rigid walls A apart,
b/h rather small:

Wall I lb 6
u2 I U 1 ..... as in Equation [6511

Wall
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TABLE III

(From Reference 5)

ADDED MASSES FOR THREE-DIMENSIONAL POTENTIAL FLOWS

Reference numbers are given under SOURCE.

S. LTPLATC \grc:,l I 7
I Pl. T

* 'l F....C -, " i

} ~ aCircular 0i3c

J, | , anguLar freqtuency

.75c = velocity of sowd

5 ;5 10' 5 7O

NON-DWmENSIONAL FREQUE4CY -

Nc A, Shawn

a 1. 0

12.7 '
1 4/, .01S5
Q.57 .1'1.1,
8.19 .978
7.00 .972
6 CO .96 1
5.02 .952
4.00 .933
3.00 .95,O
2.00 .F26

1.50 .741L~oc .637""r

K _ p%2b

2.0 .640

2.5 .t,53
3.0 1.00

_______________5_1.00 _ ___
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TABLE III (continued)
T A,: "L A Ti ,, ;L ,-

C T;O- -r'' I T '.AX CTZO '.t .. YD Y,.. C .. SS .U _

Tric irv:a r P;atcs V.:r

t . ... --;/ (A3 )

3

Z. COCIES CP REOLUTiON Vcrtnc.l Q
Spheres

---T~ ~~ a," ' I

2.0.20

- -r

st, .0 1

;1 .105 .76T

3.991 - .0 2 so;'

4.;9 .0, .
6.0l .o.10 5 .918
6.()7 .oyy -M
8.01 .029 .9,iS
, .,2 .024 .)54
9.97" .021 .(1611

0 1.00D
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TABLE III (continued)

___________L~hT rIC( IYDT!CDYK)\.!.C PAS! =Cr~C

- - L kj 3 \ 2) ~ 23 2) + - )]

Hyrdyai - a % coc~icnt for axial m~otion

1'- l.%vJrod%-a-c~ Ma-, cofficiertt for ax~ial motion
of an c Iodof thc s,ac ratio of a/b

Voul U f 1-,!N

- p ~ . 4 v

b^ (2.1)

- Nonci'n!t imtt.-! asis,SsiLt cofrc'pondm~tg
t .'n fUnot.Itet

r.. C, - fimenniunltut rad~ii of cut vaurc at no~c and tail

Motion Munki has shown that
thr hydrodytnamtic m~v~

Iof .It C rc)l , Idy

1 ttrcascnafbly a.jroxitmterd
I ty the prudtuet of tl!V

1,.ns;!y of tite nui d, the
4 t~IUICof th~e body anti

____tile It ___ Ull- for_ -. _
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TABLE III (continued)

Y RAA SL I ,,L
IODY E;APE I TI i C0Y.,'.'C /. U CZ

V

-" . --... - 2. ,

0

1.0 1.18

2.5 i.18
.3.0 I. 16
,;- .0 . i

3.5 1.!2
4.0 1-111
4.5 :.00

Ellipsoid V.-ar a Free Surface Vertical 4
mh K • .- pa

- a/b -2.00

2.00 .P05

3. BOOIES OF A,,71TRARY SHAPE ,

Ellipzod waih Afaoded I crtea1 h  ., p
Rectanju!or Flat Plot:;

n/b - c.: c..b

c. d -N r b

.20 ,8150

.30 1,02.10

.50 1.23-0

!!:pzo *fd Attaed Vertical - - pab
ec rc e #,:a, FI laes .' p
:1c C Ff-o 5c;rt 'c a/b - 2.00: e -b

-. C N ,-T ',

.... . ......

, .. - . I .- 1.-- 57
•".50 1. 5* (
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TABLE III (continued)

" TRAASLAT:,01AL h YRO YA3.N!C S S
WZ~ECMI.

.* .:".; .. =' '<'rcic':i|

'I-41.124P[4-Irad'

d c C4b

23" 2

2.11
c

•T ., , ,l "T.il" - 21' of .\ra of Body M:xim:nm 1!orizontal Sectior.

Itrom.lied bmX Vvrt ic,

¢V
C

Ar a of Iloriot,! "Tail - 20' of Area of Body Maximum florizontal Section. E

" T e rp do " T yp e I'fd y V er tie al [.8 18 p b 2 (2 )

2 2

,ta'. t of H"oi "Tail" - 10. of ',rra of Rody Maximum Iforoionl Section. EI I
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TABLE III (continued)

CODY HAPETP, SLAT i l ALCODY S'IAPS1Tr'LT;EL HYDO0DYNA),C PASS SUC

V.Fi v T 'pe Cody Vc'c.t-al

Lb 2.0_

Porallelepieds er mal K

m),~ - Kp a'b

2.32
2 .:

3 .62

4 4

0.6

1AL
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TABLE IV

(From Reference 9)

ADDED MASSES FOR THREE-DIMENSIONAL POTENTIAL FLOWS

(See Reference 9 or TABLE V for notation)

Sphere in translatory motion

T--pa3 U 2 , as in Equation [127f],
v8

M'. -rp a3, k..
8 2

Sphere moving perpendicularly to infinite rigid plane boundary, a/A small:

ITT--pa3 +- 2, as in Equation [130a]

_ 8with a - 0,

4f .n'p3, k1 (4 3 )3M -Ir k- +-- . .

Only the force required to accelerate the sphere is considered here; see Section 130.

Sphere moving parallel to infinite rigid plane boundary, a/h small:

Tm-pa3 (1+- + V, as in Equation (180al
j 3 161,3with a - 90 deg,

__l4 1/ a3
A'-Iwp a 3, k-- .- .....32 16 h3 /

Sphere moving past center of fixed spherical shell:

ii b3 +2a 3

T- p a3  + U2 , as in Equation [129e],b' b3_ a3

Fud4 1 63 +2a 3M'--- p a3, k-

2 2- 0
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TABLE IV (continued)

Prolate spheroid (or ovary ellipsoid), a>b; see Section 137:

Let e - eccentricity of sections through axis of symmetry,

l-e 2 ( ~
= I- n - - 2e,0 e 3  1-e

1-e 2 fee 1 1+e
P0 _- n__ - 4

e3 1-e2 2 - )

(1) Translation "end on":

2 ao
T=- pir ab2 U 2  00
Tf 3 2-ao

4 0
M -pn ab2, k-k 1 - O

8 2-a0

(2) Translation "broadside on":

2 go
I /T=-pwab

2 U2  
0

3 2-P 0

IA=-p1ab23 k _-_o

(3) Rotation about an axis perpendicular to axis of symmetry:

Axis of14
Rotatio T= - k ,cj 2, I= - pwn ab 2 (a 2 + b 2),

RoainW2 15

(a 2 -b 2 )2 (30_-aO)
k=k%

(a 2 + b2) [2(a 2 _p 2) - (a 2 + b 2) (9o - ao) ]

See Table A
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TABLE IV (continued)

TABLE h\

Coefficients of Inertia for Prolate Sphbroid

k, k2  ko
a/ Translation Translation Rotation about

"end on" "broadside on" Minor Axis

1.00 0.500 0.500 0

1.50 0.305 0.621 0.094

2.00 0.209 0.702 0.240

2.51 0.156 0.763 0.367

2.99 0.122 0.803 0.465

3.99 0.082 0.860 0.608
4.99 0.059 0.895 0.701

6.01 0.045 0.918 0.764

6.97 0.036 0.933 0.805

9.01 0.029 0.945 0.840

9.02 0.024 0.954 0.865

9.97 0.021 0.960 0.883

0 1.000 1.000

Oblate spheroid (or planetary ellipsoid), a < b, see Section 138, where b c:

Let e - eccentricity of sections through axis of symmetry,

e3 (e sin~l)
a0 " e3 (e

go0- V-e 2  sin-le -e (1e2)].
e
3

(1) Translation "broadside on" or parallel to axis:

rT. prr ab2VU2  0

m w pwab2 , k-k- 0

3 i-0 0 *



46

TABLE IV (continued)

(2) Translation "edge on" or perpendicular to axis:

lu 2 .80T'.-p'ab2 U2 9p

= - pnr 4b 2 , (/2 f3 2-"P-
4 __

(3) Rotation about axis perpendicular to axis of symmetry:

L T= 2 V,1.2, 1. 15p4 b( )

(a2+ k P' k°
2 

( 2- 2)

(b2 2)2 (a- 0 )

'(a2 + b2) [2 (b2-a 2) - (a2 +b2) (a-Po)]

See Table

TABLE -

Coefficients of Inertia for Oblate Spheroid

k 2  ki  k"

.a Translation Translation Rotation about
"edge on" "broadside on" Equatorial Axis

1.00 0.500 0.500 0

1.50 0.384 0.803 0.115

2.00 0.310 1.118 0.337

2.50 0.260 1.428 0.587

3.00 0.223 1.742 0.840

4.00 0.174 2.379 1.330

5.00 0.140 3.000 1.978

6.00 0.121 3.642 2.259

7.00 0.105 4.279 2.697

8.00 0 092 4.915 3.150

9.00 0.084 5.549 3.697

10.00 0.075 6.183 4.019

8 .0.000 80



47

TABLE IV (continued)

Circular disk in translation perpendicular to its faces:

4 a3

T-4p a 3 U2 , as in Equation [138o'];
3

(apparent increase in mass) 2

(spherical mass of fluid of radius a) i

Circular disk rotating about a diameter; see Section 138:

8
T4- p a s W2,

a (apparent increase in moment of inertia) 2

Axii of (moment of inertia of sphere of fluid of 3
Rotation K radius a or 8 pyr a 5 /15)

Elliptic disk of ellipticity e in translation perpendicular to its faces, a > b; References

(240) and (235):

3E a
a

(apparent increase in mass) k I
4

(- pnr a 2 b - ellipsoidal mass of fluid with
3 axes a, a, b)

n/2

Elf Vl-e2 sin 2 0 dO, the complete elliptic integral of the second kind to modulus e;

0 for table, see Peirce (20).

alb= 1 1.25 1.5 1.75 2 2.5 3 4 6 9

k" = 0.637 0.705 0.756 0.795 0.826 0.869 0.898 0.932 0.964 0.981

Ellipsoid, any ratio of the axes a, b, c; see Section 141:

~dA
Let ao = abcf dA

f (a2 +Ak)/ 2 (b2+'k)3/2 (c 2 +4) 1/2

0J
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TABLE IV (continued)

I. dk
=O- abc]o (a2 +A)1/2 (b2 + A)V2 (c2 +.X)3/2

(1) Translation parallel to the a-axis:

2 Go
T - p abc 0u 2,

3 2-- o U0

/ 4 0o
M =-prr abc, k=

a 2-a o

(2) Rotation about the a-axis:

2 9. (b 2 -c 2 ) 2 (y 0 - o)

Axis of .5-pnabc&A
Rotation n_'- 12 2 -c 2 ) + (2+02) (oy)

4 (b2 C2)2 (Yo-Po)
I'= - pnabc(b 2 + 2), k'=

15 2(b 4 -C 4) + (b 2 +c 2 ) 2 (poY-O)

For the expression of a0, go, yo in terms of elliptic integrals, see N.A.C.A. Report 210

by Tuckerman (235) or Volume I of Durand's Aerodynamic Theory (3). Some values of k and of

k', distinguished by a subscript to denote the axis of the motion, were given by Zahm (174).

Fluid inside ellipsoidal shell rotating about its a-axis, any relative magnitudes of a, b, c

(see last figure):

2 (b2 -c 2 )2  2

T - p abe - 2  as in Equation [140fl,
15 22 +c2

P- 4-p& ab (b 2 + c 2), k-

15 
2
+c /
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TABLE IV (continued)

Solid of revolution formed by revolving about its axis of symmetry the limason defined by

r= b (s + cos 0)/(s2 - I) where b and s are constants. The curve for = 1 is a cardioid. A

few values of k are given by Bateman in Reference (240):

2 8- 1.1 1.2 2 3

k - 0.578 0.573 0.569 0.548 0.527 0.500.
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TABLE V

(From Reference 9)

NOTATION FOR TABLES II AND IV SEE ALSO REFERENCE 9

a, b, c Radius of a circle or semiaxis of an ellipse or ellipsoid,
or half-width or width of a lamina

e Ellipticity

k Coefficient of inertia, a dimensionless constant

In translation, k - apparent increase in mass
mass of displaced fluid

2 T 2TI
k -- or

H'V 2  MV 2 "

In rotation, k = apparent increase in moment of inertia
moment of inertia of displaced fluid

2T 2T 1
k--- or ----

I" Moment of inertia of displaced fluid rotating as a rigid body
about the assumed axis of rotation

See under T

M" Mass of fluid displaced by body

U; See under TI

T Kinetic energy of fluid

T r, I;, M;: Values of T, 1, M'for fluid between two planes parallel to
the motion and unit distance apart, in cases of two-
dimentional motion

U Velocity of translation of body

e An angle in radians

p Density of the fluid, in dynamical units

OAngular velocity of rotation of a body, in radians per
second.

The fluid is assumed to surround the body and to be of infinite extent and at rest at
infinity, except where other conditions are indicated. In regard to units, see Sections 18, 147.




